
Raproto: An Open-Source Platform for Rapid
Prototyping with Wearable Devices

Tarek Hamid∧, Kimberly Helm∗, Hyonyoung Choi∗, Jean Park∗, Claire Kendell∗, Stephanie Cummings△,
Steve Messe△, Stefanie Modri†, Insup Lee∗, James Weimer∗, Amanda Watson∧

∧Dept. of Electrical and Computer Engineering, University of Virginia
∗Dept. of Computer and Information Science, University of Pennsylvania

△School of Medicine, University of Pennsylvania, †School of Nursing, University of Pennsylvania
{pve8nt, aawatson}@virginia.edu, {kimhelm, hyonchoi, hlpark, ckendell, lee, weimerj}@seas.upenn.edu,

{stephanie.cummings, steven.messe}@pennmedicine.upenn.edu,{modris}@nursing.upenn.edu

Abstract—Advances in wearable technology have enabled ubiq-
uitous use of wearable devices in remote patient monitoring,
particularly in clinical trials. Because of the reliance on high-
quality data in these endeavors, the first and often the most
time-consuming step is to build a data collection system. While
many systems have been developed to address this, they are
often highly specific and customized to the task at hand, and
are often not generalized enough to support other tasks. To
remedy this, we developed Raproto, an open-source easy-to-use
rapid prototyping platform that does not require the time, effort,
and expertise needed for custom development. The Raproto
platform consists of three components, the wearable device(s),
communication protocol, and remote storage. These components
support the collection, transmission, storage, analysis, and visu-
alization of large-scale data with applications from smaller-scale
research studies to large clinical trials. To reduce the burden
of device and application development, we created multipurpose
and customizable smartwatch applications on both the Android
and Tizen operating systems. We evaluate our platform in a lab
setting as well as in two real-world case studies. Overall, we find
that we can collect data using our application for over 24 hours
on a single charge and there is little to no data loss, thus making
it an ideal tool to preface customized device development for
real-world impact and commercialization.

Index Terms—wearables, data collection, Android, Tizen, re-
mote patient monitoring, clinical trials

I. INTRODUCTION

The advent of wearable technology has enabled widespread
adoption in health monitoring, particularly in clinical trials,
allowing for remote, continuous data collection. While remote
health monitoring has been successful thus far and is expected
to continue growing [1], the implementation of these systems
has introduced new challenges: they are costly to develop,
and require extensive infrastructure set-up to transmit, store,
and examine the gathered data [2]. As more remote health
monitoring systems are developed, steps need to be taken
to mitigate the cost and technical effort required for proper
implementation of these systems. Many systems have been
introduced to overcome these barriers, enabling the imple-
mentation of wearable devices in large-scale clinical trials.
Manufacturers of popular smartwatch devices offer services for
large-scale data collection such as ResearchKit and CareKit [3]
for the Apple Watch. However, these applications are typically
either confined to a single operating system, require extended

permissions to collect certain kinds of data, or require an
accompanying app that is either provided or must be developed
by the study investigators. As such, a limited number of
multipurpose data collection systems have been developed that
use the sensors on commercially available smartwatches for
their systems. A list of these systems can be found below in
Table I.

TABLE I: Multipurpose Smartwatch Data Collection Systems

Platform Name Year Description

mCerebrum [4] 2016 Android app for multi-sensor data col-
lection with complete storage and ad-
vanced analytics.

ROAMM [5] 2016 Tizen app for sensor data collection and
remote server transmission for mobility
monitoring.

WaDa [6] 2018 Android smartwatch app for sensor se-
lection, labeling, and data export to a
desktop file, limited to one watch at a
time.

RADAR-Base
[7]

2019 Uses wearable devices, accompanying
questionnaire app, and third-party inte-
gration for data collection and storage
for iOS and Android.

SenseCollect [8] 2021 Uses Android smartwatches to collect
human activity data with a focus on
data labeling.

Generally, while many of these data collection systems have
provided great utility for smartwatch deployments with spe-
cific requirements, they are not generalizable towards diverse
and broader applications where requirements may slightly
change. Many of the platforms in Table I are either specific to
a single data type [5], [8], are cumbersome to use with sensors
spanning multiple participants at once as they require an
accompanying mobile app [4], [7], do not export data that can
be easily extracted and aggregated across multiple participants
[6], or are not open-source [5]. This limitation becomes more
pronounced in scenarios such as large-scale data collection
in clinical trials or in hospitals, where the variability in data
requirements such as different sensor utilization and the scale



of operations in terms of interface usability and data storage
expose the shortcomings of these systems.

In this paper, we present Raproto, an open-source platform
enabling rapid prototyping with wearable devices. Raproto is
an easy-to-use platform allowing for rapid development of
data collection systems using wearable devices, decreasing
the time, effort, and monetary contributions typically required
for such endeavors. Our application leverages sensors already
included with commercial smartwatches and allows for cus-
tomization based on the needs of the project. This allows
researchers to configure the watch to have extended battery
life, collect more sensor data, and control how often data
is transmitted for storage. The open-source code application
repositories are available at [9] for the Tizen application
and [10] for the Android application. This allows developers
who need a more custom solution to easily extend the base
application to suit their needs.

We evaluate Raproto in the lab and in two real world
deployments. Firstly, we assess the Raproto applications by
studying the battery life under different settings and find that
data volume has the largest effect on battery life. Then, we
analyze the data loss and data latency of the platform and
find that by modifying our settings, we can achieve no data
loss and very low data latency. Finally, we investigate how
Raproto performs in two real-world deployments: in-hospital
stroke detection and postpartum hemorrhage prediction. These
real-world deployments illustrate system utility and usability,
and provide insights for future improvements.

The contributions of this work include: (1) an open-source
platform for rapid prototyping of wearable devices, (2) a
customizable smartwatch application that collects data from
available sensors at specified rates, and (3) an evaluation of
our system in two real-world case studies: In-hospital Stroke
Detection and Post-Partum Hemorrhage Prediction.

II. RAPROTO PLATFORM

The Raproto platform consists of three main components:
a smartwatch application, a communication protocol, and a
remote server (see Fig. 1). This section provides a detailed
overview of each component and their interactions.

Raproto Application Remote Server

MQTT

Telemetry

Commands
Data 

Storage

Data Collection Battery Management

User Interface Device Management

Storage Visualization

Fig. 1: Raproto Platform

A. Smartwatch Application

The Raproto application is designed to run on smartwatches
with Tizen and Android operating systems. It facilitates data
collection from the sensors embedded in these devices, offer-
ing a practical interface for configuration and control, without

the need for a companion smartphone or mobile application.
While these applications were developed across two operating
systems, we have tested and evaluated them using the Samsung
Galaxy Active for the Tizen operating system and the Galaxy
Watch 5 for the Android operating system; functionality was
also confirmed on the Google Pixel Watch 2.

(a) Android Main (b) Android Data Collect (c) Android Config

Fig. 2: User Interface of the Smartwatch Applications

a) User Interface: The Raproto application UI supports
easy switching between Tizen and Android platforms, main-
taining consistent functionality. It allows users to customize
settings (device name, sensor configurations, battery manage-
ment, data transmission intervals) manually or via a remote
configuration file. Data collection is controlled by a toggle
switch (Figure 2b), with green indicating success and red
signaling an error. The app collects data in the background,
even when the screen is off or another app is running, and can
be stopped by toggling the switch off or selecting Save and
Exit.

b) Watch Configuration: Raproto is designed to be fully
customizable. Sensor selection, sampling rates, data transmis-
sion settings, and displayed device name are selected by the
user. This customization supports targeted data collection and
as-needed transmission, and can be completed remotely. In
clinical applications, remotely updating the device avoids the
logistical challenge of collection and distribution of devices to
participants.

c) Data Collection: The Raproto applications collect de-
identified sensor data from smartwatches. Both applications
allow users to customize sensor combinations and sampling
frequencies via the remote server’s user interface, ensuring
remote updates without interrupting the study.

d) Data Storage: The Raproto application support use of
the smartwatch’s local storage for on-device data collection.
Sensor data is timestamped, labeled, and encoded in JSON
format [11]. Data is collected in 10kb chunks and stored in
a SQLlite database [12]. When ready, all stored chunks are
transmitted to the remote server.

e) Battery Management: Raproto has been specifically
configured to maximize battery life by offering customization
for the display, sensor data volume, and communication radio
settings, three factors that have the greatest impact on battery
life in smartwatches [13]. The display settings are configured
to turn off quickly, reduce brightness, and use a static black-
and-white background, with a lock screen pin code to discour-
age interaction. Sensor data volume is managed by adjusting



the number of sensors, sampling rates, and data resolution to
conserve battery life. Communication radios, particularly Wi-
Fi, have three modes: Wi-Fi off, reconnect if dropped, and
connect only during data transmission, balancing battery life
and data transmission needs.

B. Communication Protocol

Raproto uses MQTT, a lightweight messaging protocol ideal
for battery-constrained wearable devices and minimizing data
loss. MQTT’s small footprint and minimal bandwidth require-
ments ensure efficient data delivery. It offers three Quality
of Service (QOS) levels: QOS 0 (low overhead, no delivery
guarantee), QOS 1 (guaranteed delivery, possible duplication),
and QOS 2 (exact delivery, higher overhead). Users can select
the appropriate QOS level for their project, with QOS 1 being
generally sufficient.

C. Remote Server

We designed Raproto to work with Thingsboard, an open-
source IoT platform for device management, data collection,
processing, and visualization [14]. Using SSL MQTT port
8883 for encrypted connections, our design allows compatibil-
ity with any MQTT broker/client combination. Thingsboard’s
web portal, which can be accessed via any commercial web
browser, enables users to manage devices and data.

a) Device Management: Users can remotely configure
and manage connected devices, adjusting settings such as
sampling rates, device names, MQTT quality of service level,
transmission rate, and Wi-Fi mode. Successful configuration
is confirmed with a success message, and live data can be
viewed to verify and debug configurations.

b) Data Storage: Data is stored in TimescaleDB, opti-
mized for time-series data, allowing fast storage and efficient
processing of multiple high-fidelity data streams. Users can
view and export data using SQL queries through Thingsboard
dashboards, which can be customized to fit specific needs.

c) Processing and Visualization: Thingsboard provides
tools for data visualization and processing, aiding in quick
debugging and usability for those with less technical knowl-
edge. Customizable dashboards with widgets for time-series
charts, text data, and boolean switches allow real-time data
monitoring. Data filtering, enrichment, transformation, and
rule chains can enhance data presentation. Alarms can alert
users to real-time errors, expediting the debugging process.

III. SYSTEM EVALUATION

We evaluate the Raproto system to provide insight into
various configurations and their impact on performance. In
the following subsections, we examine factors that affect
the battery life, analyze the vulnerability to data loss, and
investigate the effects of data latency.

a) Baseline Performance Improvements: Raproto pro-
vides users with settings that conserve battery life. With our
modifications, such as reducing screen brightness and dis-
abling unused communication, we see a gain of approximately
4.8 hours of battery life for the Tizen smartwatch and a gain

of approximately 6.2 hours of battery life for the Android
smartwatch.

b) Sensor Data Volume: Testing revealed that at 10 Hz,
both Tizen and Android smartwatches lasted over 24 hours.
At 20 Hz, battery life dropped to around 16 hours, and at 200
Hz, it was about 12 hours. Rates above 250 Hz significantly
reduced battery life. At 500 Hz, the Android watch failed
to maintain the rate, and the Tizen watch struggled with
transmission. At 1000 Hz, the Tizen watch experienced errors,
reducing battery life to about 4.2 hours. Higher sampling rates
drastically decrease battery life (Table II).

TABLE II: Expected Battery Life Using Accelerometers at
Different Sampling Frequencies

Sampling Rate (Hz) Battery Life
Tizen Android

10 25.2 hrs 24.7 hrs
20 16.1 hrs 15.8 hrs
50 14.7 hrs 13.1 hrs

100 13.3 hrs 11.8 hrs
200 12.8 hrs 10.7 hrs
250 7.6 hrs 6.8 hrs
333 5.5 hrs 5.3 hrs
500 5.0 hrs 5.0 hrs
1000 4.2 hrs 5.0 hrs

To evaluate battery life across different sensors, we tested
various combinations at a sampling rate of 50 Hz. HRM and
PPG sensors used the least power, with Tizen lasting over 19
hours and Android over 20 hours. Accelerometer, Gyroscope,
and Gravity sensors consumed more power, with Tizen lasting
18 hours and Android over 16 hours. Combining sensors
further reduced battery life by 1-3 hours per additional sensor.
With all five sensors active, Tizen lasted nearly 12 hours, and
Android lasted 13.5 hours.

TABLE III: Sensor Combinations Expected Battery Life

Accel Gyro Gravity HRM PPG Tizen Android

x 18.1 hrs 16.8 hrs
x 17.9 hrs 16.2 hrs

x 17.8 hrs 16.3 hrs
x 19.3 hrs 24.2 hrs

x 19.1 hrs n/a
x x 17.0 hrs 15.1 hrs
x x 17.9 hrs 16.5 hrs
x x 17.9 hrs n/a
x x x 15.6 hrs 14.8 hrs
x x x x 14.1 hrs 13.4 hrs
x x x x x 11.9 hrs n/a

c) Data Loss: Data loss can occur due to network
overload or interference, such as with MRI scanners. We use
MQTT’s three QOS levels to mitigate this, allowing users
to select the appropriate level. We evaluated data loss and
duplication by sending 5000 messages per application and
simulating network interference with a microwave oven [15].
Collecting accelerometer data at 50 Hz for five minutes, we
found data loss only under QOS 0 (approximately 1% for both
Android and Tizen). In critical scenarios, QOS 1 or 2 should
be used, as they showed no data loss. QOS 2 also ensures no



data duplication, though QOS 2 is generally unnecessary for
our system.

d) Data Latency: Data latency, the time from smartwatch
data collection to remote server storage, is influenced by
transmission rate and environmental factors. The Raproto
application sends data every minute by default, balancing
battery life and real-time data needs. In a perfect environment
with no interference, both Tizen and Android smartwatches
showed less than one second of latency, which is negligible
compared to other factors.

IV. REAL WORLD DEPLOYMENTS

A. Case Studies Overview

a) In-hospital Stroke Detection: We used Raproto to col-
lect 4,000 hours of bi-lateral accelerometry data on 200 sub-
jects to validate the StrokeDetectAI algorithm [16], designated
a Breakthrough Device by the FDA. This study included 200
patients (167 control and 33 acute stroke subjects) over eight
months, using twelve Samsung Galaxy Active Smartwatches
connected to the Hospital of the University of Pennsylvania
guest Wi-Fi network. We collected 4,169 hours of three-
axis accelerometry data sampled at 5 Hz and streamed to
a Thingsboard instance. Despite some issues like a subject
removing a watch early and Wi-Fi connectivity problems due
to an OS update, no significant data loss occurred thanks to
MQTT QOS level 1.

b) Postpartum Hemorrhage Prediction: Raproto was
used in a prospective study to collect 560 nm (green) PPG
data on 525 patients over 4 months to validate a new PPH risk
assessment algorithm [17], [18]. We used 35 Samsung Galaxy
Active Smartwatches, scheduled to be worn from admission
to 24 hours post-delivery. We collected 16,800 hours of PPG
data sampled at 5 Hz, changing watches once during the data
collection period when the battery level dropped below 20%.
Overall, 16,823 hours of data were streamed to a Thingsboard
instance. About 5% of subjects removed their watches early
due to discomfort. The engineering team managed initial watch
setup and application installation, with the clinical research
team handling recruitment, watch placement, and monitoring.

B. Insights and Lessons Learned

Both deployments provided valuable insights into deploying
consumer wearables for data collection in hospital environ-
ments. Raproto enabled clinical researchers to set up and oper-
ate smartwatches with minimal engineering support. Training
allowed the clinical staff to manage hardware and software and
confirm data collection through the Thingsboard web applica-
tion. A significant challenge was the effort required to side-
load the Raproto application via a command-line interface,
which could be mitigated by providing engineering support or
releasing Raproto in the app store. The clinical team heavily
relied on Thingsboard to monitor battery life and ensure data
collection, providing immediate visual feedback and enabling
them to solve initial data collection issues. When data col-
lection failed to start, restarting the watch resolved the issue.
In the Postpartum Hemorrhage Prediction study, a temporary

connection issue with Thingsboard caused some watches to
fail to subscribe, resolved by directly encoding configuration
settings into the application and updating Thingsboard. Having
more watches than necessary alleviated the need for rapid
responses to failures. Overall, these insights underscore the
practicality and efficiency of using Raproto in clinical settings.

V. CONCLUSION

In this paper, we presented Raproto, an open-source plat-
form for rapid prototyping with wearable devices. Raproto
eliminates the need for extensive time, effort, and technical
expertise in developing custom data collection systems. We
created two customizable smartwatch applications to ease
device and application development. Our evaluations showed
that a smartwatch with our application collected data for over
24 hours on a single charge with minimal data loss in multi-
ple real-world deployments. These deployments demonstrated
Raproto’s usability in clinical environments, providing data
that would otherwise require significant hardware development
and additional costs.

REFERENCES

[1] “Remote patient monitoring system market growth & trends,”
https://www.grandviewresearch.com/press-release/global-remote-
patient-monitoring-devices-market, published: January, 2021.

[2] C. Downey et al., “The impact of continuous versus intermittent vital
signs monitoring in hospitals: A systematic review and narrative syn-
thesis,” 2018.

[3] A. Inc., “Researchkit,” https://www.apple.com/lae/researchkit/, 2024.
[4] S. Hossain et al., “mcerebrum: A mobile sensing software platform for

development and validation of digital biomarkers and interventions,” in
SenSys, 2017.

[5] M. Kheirkhahan et al., “A smartwatch-based framework for real-time
and online assessment and mobility monitoring,” Journal of biomedical
informatics, 2019.

[6] M. A. S. Mondol et al., “Wada: An android smart watch app for sensor
data collection,” in UBICOMP, 2018, pp. 404–407.

[7] Y. Ranjan et al., “Radar-base: Open source mobile health platform for
collecting, monitoring, and analyzing data using sensors, wearables, and
mobile devices,” JMIR Mhealth and Uhealth, vol. 7, no. 8, 2019.

[8] W. Chen et al., “Sensecollect: We need efficient ways to collect on-body
sensor-based human activity data!” IMWUT, vol. 5, no. 3, 2021.

[9] A. Watson, “Raproto-tizen,” https://github.com/aawatson22/Raproto-
Tizen, 2022.

[10] J. Weimer, “Raproto-wearos,” https://github.com/weimerj/Raproto-
WearOS, 2022.

[11] F. Pezoa et al., “Foundations of json schema,” in Proc. 25th Int. Conf.
World Wide Web, 2016.

[12] S. Bhosale et al., “Sqlite: Light database system,” Int. J. Comput. Sci.
Mob. Comput, 2015.

[13] X. Liu and F. Qian, “Poster: measuring and optimizing android smart-
watch energy consumption,” in MobiCom, 2016.

[14] “Thingsboard: Open-source iot platform,” 2022.
[15] D. Croce et al., “Learning from errors: Detecting cross-technology

interference in wifi networks,” IEEE Trans. Cogn. Commun. Netw.,
vol. 4, no. 2, 2018.

[16] S. R. Messé et al., “Derivation and validation of an algorithm to detect
stroke using arm accelerometry data,” J Am Heart Assoc, vol. 12, no. 3,
p. e028819, 2023.

[17] K. Trout et al., “Derivation and validation of an intrapartum algorithm to
predict postpartum hemorrhage risk using photoplethysmography data,”
American Journal of Obstetrics and Gynecology, January 2024, iF 9.8.

[18] S. Modri et al., “Observational clinical outcomes of a postpartum
hemorrhage detection device development study,” 2022.


