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Abstract—Blood pressure (BP) is a key indicator of cardiovas-
cular health, with hypertension leading to significant morbidity
and mortality worldwide. Continuous monitoring of BP is essen-
tial for early detection of cardiovascular disease, however current
tools are either cumbersome, unreliable, or not suited for long-
term use. Traditional cuff-based BP measurement, while reliable,
is impractical for continuous monitoring. Recent advances using
photoplethysmography (PPG) waveforms offer an alternative,
but they face challenges such as limited interpretability, high
computational complexity, and susceptibility to motion artifacts.
In this paper, we introduce a novel multi-wavelength optical
sensing framework designed for calibration-free wearable blood
pressure monitoring. Our system utilizes a broad spectrum of
wavelengths and interpretable features, combined with machine
learning, to estimate systolic (SBP), diastolic (DBP), and mean
arterial pressure (MAP). The framework was tested in a proof-
of-concept study involving 9 subjects across varied postures
and BP levels, demonstrating accuracy comparable to standard
cuff-based techniques. This approach eliminates the need for
continuous calibration and provides a scalable, interpretable
solution for real-time, wearable BP monitoring.

Index Terms—blood pressure, wearable, calibration-free, spec-
troscopy, multi-wavelength, PPG

I. INTRODUCTION

Blood pressure is one of the most commonly monitored vital
signs, critical for monitoring overall health [1]. Hypertension,
or high blood pressure, is a leading contributor to morbidity
and mortality in the United States, where nearly half of adults
are affected [2]. The CDC has reported a stark increase in
hypertension over the last decade, with prevalence rising from
10.2% in 2011-2012 to 48.1% in 2022 [2]. Despite increased
prevalence and awareness, blood pressure control remains
unsatisfactory [3]. As a result, ubiquitous tools for detecting
and managing blood pressure, especially outside the clinic,
have become increasingly desired.

An effective approach to managing and reducing blood
pressure-related diseases is early detection, timely treatment,
and continuous monitoring. The oscillometric method, com-
monly used in clinical settings, relies on an inflatable cuff to
measure oscillations in arterial wall pressure during deflation,
similar to manual Korotkoff sound-based measurements [4].
However, this method has limitations, including discomfort
from cuff inflation [5], inaccuracies in certain populations [6],
improper usage [7], [8], and the inability to provide continuous

monitoring [9]. These drawbacks have driven the development
of cuffless methods to alleviate this burden.

To date, there has been a large amount of research on
cuffless blood pressure monitoring; exhaustive reviews can be
found in [10] and [11]. Traditionally, PPG is used alongside
ECG to calculate pulse transit time (PTT), the time it takes for
an arterial pulse wave to travel between two points. This mea-
sure correlates directly with blood pressure—shorter transit
times generally indicate higher pressure due to stiffer arterial
walls [12], [13]. However, systems based on PTT require
initial and ongoing calibration with an oscillometric cuff to
account for individual physiological differences, such as tissue
composition and vascular elasticity [14], [15]. While this
approach has enabled more continuous monitoring of blood
pressure without the constant need for a cuff, it also faces
challenges, including the ongoing need for cuff calibration
[16], difficulty in calculating PTT with abnormal ECG signals
[17], and the need for advanced algorithms to filter noise,
especially in motion-sensitive PPG waveforms [18].

Recent research has increasingly focused on estimating
blood pressure using advanced signal processing and machine
learning techniques solely from PPG waveforms. These ap-
proaches extract features from fiducial points of the PPG
waveform and utilize physiological models [19], machine
learning regression [20], [21], and deep learning [21]–[23]
to predict blood pressure with reasonable accuracy. Several
calibration-free devices, such as those by Aktiia [24], Corsano
[25], and Valencell [26], claim to provide accurate blood
pressure readings using PPG and machine learning algorithms
without the need for traditional cuff calibration. However, none
of these devices have received FDA approval.

Despite promising progress in calibration-free PPG-based
monitoring, challenges remain. Accurate predictions depend
on the precise extraction of PPG waveform features, which
requires high-fidelity data, a high sampling rate, and advanced
denoising techniques—factors that can impact battery life in
practical applications and may be impractical in a wearability-
constrained and noisy environment [27]. Additionally, deep
learning models used in this context often lack explainability,
a critical factor for clinical use.

To date, there has been limited work on wearable devices
utilizing wavelengths across the visible spectrum for blood



pressure measurement. Liu et. al [28] and Botrugno et. al
[29] proposed multi-wavelength PPG algorithms for cuffless
blood pressure monitoring, employing principal component
analysis and neural networks, respectively. While these ap-
proaches have demonstrated performance comparable to, or
even surpassing, single and dual-wavelength PPG sensors,
they still face several limitations, including the need for
individual calibration [28], operation within a relatively narrow
spectral band [28] [29], reduced wearability [28], and limited
interpretability of the resulting models [28] [29].

There is a growing body of work suggesting that additional
contextual sensors that increase spectral resolution may im-
prove optical biomarker detection, especially in the presence of
noise [30]. In this paper, we introduce a multi-spectrum spec-
tral framework using an off-the-shelf wearable for calibration-
free BP monitoring. This framework employs interpretable fea-
tures combined with machine learning techniques to estimate
mean arterial blood pressure (MAP), systolic blood pressure
(SBP), and diastolic blood pressure (DBP), achieving accuracy
comparable to existing methods. We evaluate this framework
in a n=9 feasibility study, spanning a range of BP values to
demonstrate its effectiveness and generalizability.

The contributions of this work include: (1) the development
of a novel multi-spectrum spectroscopy framework that lever-
ages wavelengths across the visible spectrum for calibration-
free BP monitoring; (2) the implementation of classical ma-
chine learning techniques that utilize easily interpretable fea-
tures to estimate MAP, SBP, and DBP, achieving accuracy
comparable to traditional methods; and (3) a comprehensive
evaluation of the proposed framework in a n=9 feasibility
study to validate its effectiveness and generalizability.

II. FRAMEWORK DESIGN

Fig. 1: Blood Pressure Prediction Framework

An overview of the system architecture used to collect
multi-wavelength spectral data and convert these measure-

ments to SBP, DBP, and MAP values relative to ground-truth
is shown in Figure 1.

We utilized Lumos [31], an off-the-shelf wearable device,
for multispectrum optical measurements. Lumos utilizes LEDs
and photodiodes (PDs) ranging from 400nm-1000nm, allowing
for a wide sensing spectral resolution that current commercial
wearable devices do not provide. The device can be config-
ured in several form-factors through the use of a detachable
strap; we utilized a fingertip and wrist form-factor for this
study. Regardless of configuration, spectral measurements are
recorded in reflectance mode. Lumos functions by recording
the PD responses for each LED that is turned on during its
operation cyclically. Thus, for a sensor array of 9 PDs and 10
LEDs, there are 90 sensor readings every 1.7 seconds.

For ground-truth measurements, the BIOPAC NIBP100E
was used [32]. The NIBP100E is a data acquisition system
that uses arterial occlusion of the fingers along with occa-
sional arm cuff calibration to provide continuous, beat-to-
beat, blood pressure waveforms and downstream values (SBP,
DBP, MAP). The system is FDA and CE-approved and is
used commonly in academic settings, with an accuracy of
±5mmHg. We conducted a proof-of-concept study with 9
subjects to evaluate feasibility of our framework. The BIOPAC
NIBP100E was positioned on the participant’s right arm,
while an arm cuff was placed on the left arm for initial
calibration. The Lumos devices (configured for finger and
wrist placement) were worn on the left arm after calibration
to avoid blood pressure distortions caused by upstream or
downstream arterial occlusion from the NIBP finger cuffs. This
setup allowed for accurate, distortion-free readings between
arms, with continuous data collection from all devices.

To simulate varying blood pressure conditions, measure-
ments were taken while participants were seated, standing, and
lying down with their legs elevated. Each position was held
for approximately 3 minutes, totaling 9 minutes per subject.
During this time, the BIOPAC device continuously recorded
SBP, DBP, and MAP values on a beat-to-beat basis. This study
was approved by the Institutional Review Board of University
of Virginia (IRB-HSR #240068).

Systolic, diastolic, and MAP values were time-aligned with
the nearest respective Lumos measurements for direct com-
parison. The following features were then used for training on
each row corresponding to a single Lumos measurement (90
columns) and output targets (SBP, DBP, MAP):

1) LED-PD values - representing sensor readings corre-
sponding to individual LED and photodiode (PD) re-
sponses during a Lumos cycle.

2) LED-PD AC and DC extraction - 5th-order high-pass
and low-pass Butterworth [33] filters, with a cutoff fre-
quency of 0.1 Hz, were applied to extract the alternating
current (AC) and direct current (DC) components from
each LED-PD signal.

3) Inter-beat interval - time between successive peaks for
each LED-PD waveform.

4) Ratios of above features - to provide normalization or
relationness, ratios of all the above features were taken.



Model Finger (Subject-specific) Wrist (Subject-specific) Finger (Generalized) Wrist (Generalized)

MAP Diastolic Systolic MAP Diastolic Systolic MAP Diastolic Systolic MAP Diastolic Systolic
MAE (SD) MAE (SD) MAE (SD) MAE (SD) MAE (SD) MAE (SD) MAE (SD) MAE (SD) MAE (SD) MAE (SD) MAE (SD) MAE (SD)

XGBoost 4.14 (0.52) 4.36 (0.41) 5.37 (0.69) 4.09 (0.50) 4.23 (0.47) 5.30 (0.97) 7.04 (2.43) 7.21 (2.14) 9.50 (3.35) 6.92 (1.69) 6.76 (1.70) 10.21 (3.25)
CatBoost 4.15 (0.60) 4.37 (0.55) 5.31 (0.76) 4.04 (0.62) 4.33 (0.55) 4.99 (0.95) 6.71 (2.31) 6.99 (2.22) 9.30 (3.29) 7.19 (2.20) 6.48 (1.60) 10.26 (3.03)
LightGBM 4.18 (0.57) 4.53 (0.54) 5.31 (0.88) 4.11 (0.53) 4.27 (0.54) 5.62 (1.40) 7.31 (2.33) 7.58 (2.11) 10.20 (2.92) 7.47 (2.22) 7.23 (2.08) 11.42 (3.91)
RandomForest 4.39 (0.65) 4.75 (0.72) 5.22 (0.82) 4.24 (0.60) 4.26 (0.48) 5.67 1.77) 7.53 (2.44) 7.89 (2.45) 10.65 (2.84) 8.55 (2.70) 7.52 (1.65) 13.19 (5.23)
GradientBoosting 5.07 (0.28) 5.43 (0.27) 6.80 (0.82) 5.07 (0.25) 5.37 (0.15) 7.27 (1.01) 7.12 (2.32) 7.34 (2.10) 9.60 (3.17) 7.20 (1.95) 6.74 (1.72) 10.19 (3.17)

TABLE I: Top five models’ performance for MAP, diastolic, and systolic measurements on the finger and wrist.

These features were chosen based on the assumption that
physiological factors—such as skin thickness, skin-tone, and
vascular elasticity—which require re-calibration or advanced
non-linear modeling in systems solely relying on traditional
PPG, can be effectively captured using additional wavelengths
that are utilized in Lumos. The simplicity of these features was
intentional to prioritize interpretability.

To evaluate the performance of various machine learning
models in predicting blood pressure, we used a combination of
regression techniques. The tested models included tree-based
algorithms such as random forest, gradient boosting, XGBoost,
CatBoost, and LightGBM models, as well as linear models
such as Ridge, Lasso, and basic linear regression. Variance
thresholding was used to remove low-variance features, which
were then scaled using RobustScaler, allowing the model to
be resistant to outliers. Recursive feature elimination using
a random forest model as the base estimator was used to
reduce the feature set to the most relevant predictors prior
to training. We utilized two models for each target variable
per form-factor: a generalized model on the entire cohort and
a subject-specific model that corrected for individual biases
following training. These results are discussed in Section III.

III. EVALUATION

(a) Systolic Histogram (b) Diastolic Histogram

(c) MAP Histogram

Fig. 2: Data distribution among three output target variables.

A summary of input statistics for the collected subject data
can be found in Fig 2a, 2b, and 2c. The systolic values
appear to follow a relatively normal distribution, with fewer
data points observed in the hypertensive range. Diastolic
values, conversely, are skewed towards lower blood pressure,
while MAP displays a more symmetric, normal distribution.
Given that the population is expected to be predominantly
normotensive, these results align with expectations.

We implemented leave-one-subject-out (LOSO) cross-
validation to ensure the models had the ability to predict an
entirely new subject’s data after training. Mean absolute error
(MAE) and its standard deviation (SD) were calculated for
each model to quantify performance and model stability across
various features and target variables. Table I demonstrates
the models’ performance at predicting each blood pressure
metric for the finger and wrist, using both our generalized and
subject-specific model. Performance is relatively strong across
all models in both configurations, with MAP and diastolic
MAEs outperforming systolic. Our subject-specific models
performed extremely well across form-factors and targets.

To contextualize these results, we present them relative to
current international standards. IEEE, the British Hypertension
Society (BHS), and the Association for the Advancement of
Medical Instrumentation (AAMI) each have standards regard-
ing the performance of blood pressure estimation models;
these standards are utilized by regulatory agencies during
evaluation of these devices.

BHS Compliance (%)

Target ≤ 5 mm ≤ 10 mm ≤ 15 mm Grade

SBP (W) 59.8 88.0 97.0 B
DBP (W) 65.8 92.5 99.2 A
MAP (W) 68.9 93.5 99.4 A
SBP (F) 57.4 86.1 96.0 B
DBP (F) 64.5 92.7 99.3 A
MAP (F) 68.0 93.1 99.1 A

TABLE II: BHS compliance and grades for wrist (W) and
finger (F) measurements.

a) BHS classifies performance based on compliance percent-
age, or how much of a percentage of the predicted values fall
within three thresholds: 5mmHg, 10mmHg, and 15mmHg. Our
subject-specific wrist and finger systolic predictions score a B
based on this classification, and an A for all other predictions.
These results are summarized in Table II.



IEEE and AAMI Results

Target MAD ME SD IEEE Grade AAMI

SBP (W) 5.06 0.88 6.67 B Compliant
DBP (W) 4.32 0.40 5.47 A Compliant
MAP (W) 4.05 0.56 5.15 A Compliant
SBP (F) 5.26 0.37 6.94 B Compliant
DBP (F) 4.40 0.52 5.52 A Compliant
MAP (F) 4.14 0.32 5.32 A Compliant

TABLE III: IEEE and AAMI results for wrist (W) and finger
(F) measurements.

b) IEEE and AAMI have similar standards, with different
implementations. IEEE grades devices based on their mean
absolute difference (MAD). Similar to the BHS classifications,
we score a B in subject-specific wrist and finger systolic
predictions, and an A in all other predictions. Finally, AAMI
determines compliance by checking the mean error (ME) as
well as the standard deviation (SD). Across all predictions, we
are AAMI compliant. These results are summarized in Table
III.

The most important features to our models were a combi-
nation of LED-PD DC extracted waveforms and their ratios
in the 500-700nm range, as well as LED-PD ratios across
the visible spectrum and interbeat internal (IBI) ratios in the
500-700nm range. These features were consistent across form-
factors, models, and targets. Below are examples of each:

• Feature 1: LED633-PD590 / LED670-PD415
• Feature 2: LED415-PD680-DC / LED633-PD590-DC
• Feature 3: LED633-PD590-IBI / LED670-PD415-IBI

IV. DISCUSSION

Our multi-wavelength optical sensing framework offers
several advantages over traditional PPG-based systems for
blood pressure estimation. By utilizing wavelengths across
the visible spectrum, rather than relying on the traditional
single or dual-wavelength approach, our system can allow for
better differentiation between various tissue types and compo-
nents, potentially increasing the accuracy of blood pressure
estimation across diverse populations. A multi-wavelength
approach may also be more robust against motion artifacts
and environmental interference, since all channels may not be
affected by noise. Furthermore, the framework is extremely
versatile: the device can be fit into multiple form-factors, not
just the finger and wrist, and can be equipped with sensors
from across the visible and infrared spectrum to tailor sensing
using wavelengths that are specific to blood pressure detection.

Our models have uncovered features that suggest a deeper
understanding of tissue properties beyond those measured by
traditional PPG, potentially improving blood pressure detec-
tion. Given the particular relevance of feature ratios, its possi-
ble that DC, LED-PD, and IBI ratios capture complementary
aspects of light interaction that are not solely correlated with
the pulse wave. Notably, while IBI is traditionally associated
with heart rate, in this context, it may also capture other AC
components related to respiration and skin dynamics, thus
providing a normalization to traditional PPG features and

improving overall blood pressure detection. Further studies
will be conducted to explore these relationships in greater
detail.

While our current models benefit from subject-specific train-
ing, we expect general-purpose models to perform similarly
with sufficient data. While subject-specific models may resem-
ble traditional calibration, they likely learn spectral patterns
specific to the individual, thereby eliminating the need for
periodic recalibration as required in methods like pulse transit
time and allowing for a one-time calibration. Overall, as our
training dataset grows, we anticipate that generalized mod-
els will achieve performance comparable to subject-specific
models. We also observed significant oversaturation in certain
photodiodes during our trials, particularly the 820nm PD,
which might be relevant for blood pressure detection; we aim
to correct this in future studies and expect better performance
as a result.

While this study serves as a promising proof of concept
for our multi-wavelength optical sensing framework, we ac-
knowledge that significant further validation is required. Our
next steps include expanding the study to a much larger and
more diverse cohort, encompassing a wider range of blood
pressure values, with particular emphasis on hypertensive
subjects, as well as various demographic factors including
age, gender, and fitness levels. We will also investigate edge
cases by exploring blood pressure changes in scenarios such
as drug administration effects, stress-induced fluctuations, and
exercise-related variations. Given that blood pressure typically
decreases during sleep [34], we plan to conduct overnight
studies to evaluate our system’s performance in detecting
and accurately measuring these nocturnal dips. To ensure
long-term stability, we will assess the algorithm’s accuracy
and reliability over extended periods to confirm consistent
performance without the need for recalibration. Lastly, we plan
to conduct rigorous comparisons against invasive arterial line
measurements and other FDA-approved non-invasive devices
to validate our system’s accuracy.

V. CONCLUSION

This paper introduces a novel multi-wavelength optical sens-
ing framework for calibration-free, wearable blood pressure
monitoring. By leveraging multiple wavelengths across the
visible spectrum, combined with machine learning and signal
processing techniques, we have demonstrated the ability of
the system to provide accurate estimates of SBP, DBP, and
MAP. The results of our proof-of-concept study (n=9) indicate
that the proposed framework achieves accuracy comparable to
current cuff-based methods while maintaining interpretability
and robustness across a range of blood pressures. Future work
will focus on expanding the cohort size to include a more
diverse demographic and exploring the framework’s perfor-
mance in various scenarios, such as during physical activity
or in response to pharmacological interventions. Additionally,
further validation against invasive and non-invasive gold-
standard devices will be necessary to confirm the system’s
clinical applicability.
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