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Abstract

People with Parkinson’s Disease (PD) have multiple symptoms, such as freezing of gait (FoG), 

hand tremors, speech difficulties, and balance issues, in different stages of the disease. Among 

these symptoms, hand tremors are present across all stages of the disease. PD hand tremors 

have critical consequences and negatively impact the quality of PD patients’ everyday lives. 

Researchers have proposed a variety of wearable devices to mitigate PD tremors. However, these 

devices require accurate tremor detection technology to work effectively while the tremor occurs. 
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This paper introduces a PD action tremor detection method to recognize PD tremors from regular 

activities. We used a dataset from 30 PD patients wearing accelerometers and gyroscope sensors 

on their wrists. We selected time-domain and frequency-domain hand-crafted features. Also, we 

compared our hand-crafted features with existing CNN data-driven features, and our features have 

more specific boundaries in 2-D feature visualization using the t-SNE tool. We fed our features 

into multiple supervised machine learning models, including Logistic Regression (LR), K-Nearest 

Neighbours (KNNs), Support Vector Machines (SVMs), and Convolutional Neural Networks 

(CNNs), for detecting PD action tremors. These models were evaluated with 30 PD patients’ data. 

The performance of all models using our features has more than 90% of F1 scores in five-fold 

cross-validations and 88% F1 scores in the leave-one-out evaluation. Specifically, Support Vector 

Machines (SVMs) perform the best in five-fold cross-validation with over 92% F1 scores. SVMs 

also show the best performance in the leave-one-out evaluation with over 90% F1 scores.
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1 INTRODUCTION

Parkinson’s disease (PD) is a chronic and continuous central nervous degeneration 

disease with more than ten million patients suffering worldwide[13]. PD has these main 

motor symptoms, including bradykinesia, postural instability, rigidity, freezing of gait, 

and tremors[29]. Typical PD tremors are hand and finger tremors, which can cause 

inconvenience and potentially severe consequences in patients’ daily lives[2].

Currently, PD and PD tremors cannot be cured entirely. However, multiple treatments 

and mitigation methods are performed to decrease tremor severity. Traditional clinical 

approaches have been utilized to mitigate the symptoms, including deep brain stimulation 

surgery[3] and Levodopa replacement therapy [9]. However, these are not always successful 

and have side effects that can be more disruptive than the symptom itself. In recent years, 

less intrusive wearable devices like vibration devices have been utilized to mitigate tremors 

in the home environment[11, 38].

In order to design a system to mitigate or quantify PD tremors, we need to detect the 

PD tremors accurately. Typically, PD tremors have three types: rest, postural, and action 

tremors[17]. The patients’ activities help distinguish the tremor types. Rest tremors are 

seen when patients sit or lie down without doing any activities. Postural tremors occur 

when patients maintain a stationary pose. Action tremor appears as patients are involved in 

activities such as writing and drawing. TremorSense[36], a system to detect PD tremors, has 

used a multi-layer Convolutional Neural Network (CNN) method. The CNN method detects 

rest tremors and postural tremors with above 95% accuracy. However, the accuracy and 

F1-score for action tremor detection was only 70%–80% in our evaluation. This problem 

motivates us to investigate more reliable features and robust models to classify PD action 

tremors.
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To accurately detect PD action tremors, we need to solve the two following research 

questions:

RQ1: How to design features to accurately detect action tremors?

RQ2: How to design models to accurately detect action tremors?

In this paper, we introduced an approach to classify PD action tremors from daily activities. 

We used the dataset collected from 30 PD patients with a wearable device consisting 

of accelerometer and gyroscope sensors on the patient’s wrists. We divide the data into 

instances with a time frame of 1.28 seconds. The sampling rate of the sensors was 100Hz. 

Each instance has 1.28*100*6 data points. We employed 4,000 action tremor instances and 

4,000 activity instances. We extracted hand-crafted features based on domain knowledge 

and selected the features with the LASSO algorithm. Based on the t-SNE visualization tool, 

the high dimension distribution of the our hand-crafted features is more apparent than the 

data-driven TremorSense features. We evaluated our features using Linear Regression (LR), 

Support Vector Machines (SVMs), K-Nearest Neighbors (KNNs), and Convolutional Neural 

Network (CNN). The performance of all four models has more than 90% of F-1 scores and 

92% accuracies.

Our contributions are summarized as follows:

• To answer research question 1, we extracted hand-crafted features based on 

domain knowledge and selected the features with the LASSO algorithm. From 

the t-SNE visualization results, our hand-crafted features have more apparent 

boundaries than the data-driven TremorSense features.

• To answer research question 2, we evaluated our features on four supervised 

learning models. The performance of all models has more than 90% of F-1 

scores and 92% of accuracies, which indicates that different classification 

algorithms perform robustly and similarly with our features.

We organize our paper as follows. In Section 2, we first introduce the details of our dataset. 

Then, we present feature extraction and selection methods. Section 3 presents the machine-

learning models we utilized to classify PD actions tremors. In Section 4, we introduce the 

classification performance of these machine-learning models. In Section 5, we discuss our 

limitations and propose potential works. In Section 6, we present the related works about 

tremor detection. In Section 7, we conclude our research results.

2 FEATURE EXTRACTION AND SELECTION

2.1 Dataset

We used the same dataset as TremorSense [36]. The dataset was collected in a clinical 

environment with the help of medical specialists. The dataset includes 30 patients 

performing seven UPDRS activities and three Fahn-Tolosa-Marin scale activities. Table 

1 shows the specific activities, and Table 2 describes all the 30 patients’ demographic 

information.
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The data for the TremorSense dataset was collected using two UG sensor bands containing 

a three-axis accelerometer and a three-axis gyroscope [43]. The UG sensor band is shown in 

Figure 1. The sensor data was transmitted via Bluetooth to the TremorSense App. During the 

tests with patients, medical professionals used a camera to record patients upper extremity 

movement to serve as the ground truth data. The ground truth videos were then used to label 

the action tremor output recorded by the UG sensor band.

The UG sensor sampling rate is 100Hz in the TremorSense dataset. The dataset was divided 

into windows with a 1.28 seconds time windows and a 0.64-second step size. Since the 

UG sensor has a three-axis accelerometer and a three-axis gyroscope, each window includes 

128*6 data points. We selected 4,000 action tremor instances and 4,000 non-tremor activities 

from the dataset. The total data points are 6,144,000 (128*6*4000*2), enough to train the 

TremorSense CNN classifier [36].

2.2 Features Extraction and Selection

As we evaluated the TremoSense data-driven features in Section 4, the accuracy is only 

about 80%. This result motivated us to select more hand-crafted features. Therefore, we 

extracted 6 * 14 features from both the time and frequency domains. Table 3 displays the 

extracted features. The time-domain features include Min, Max, Mean, Standard Deviation, 

and Zero crossing values. These features are computed for each raw component of the 

accelerometer and gyroscope readings. Similarly, the frequency-domain features are Energy, 

Entropy, Spectral-centroid, and the first three dominant frequencies and their magnitudes 

between 2Hz-10Hz. After we extract these features, we use feature selection techniques to 

select the best features to predict action tremors.

Figure 2 shows the three axes directions of both sensors in the UG sensor. The white arrows 

indicate the direction of motion of PD action tremors. Intuitively, the PD action tremors 

have very little acceleration in the Y direction along the arms. Conversely, PD tremors 

have reasonable acceleration variation in both the X and the Z directions. This observation 

leads us to select more acceleration features in the X and Z direction. Feature selection is 

also beneficial for reducing high-dimension classification costs and helps avoid overfitting. 

The feature selection algorithm we have chosen in a Logistic Regression method is Least 

Absolute Shrinkage and Selection Operator (LASSO).

LASSO is a popular regularization and feature selection algorithm for machine learning 

classifiers. The LASSO model has a constraint on the sum of the absolute values of the 

model parameters, and the sum has to be less than an upper bound. The method applies a 

shrinking process, also known as the regularization process, where it penalizes the weights 

of the regression features and forces some of them to zero. If the features still have a 

non-zero weight after the shrinking process, they are selected to be a part of the model.

The LASSO starts with a linear regression model and can be expressed as :

Y i = β0 + X1β1 + ⋯ + Xnβn (1)
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Xi is the input features, Y is the prediction matrix, and the parameters β0, β1, ⋯, βn are the 

regression weights. The cost function of LASSO regression is as follows:

∑
i = 1

n
yi − ∑

j = 1

n
xijβj

2
+ λ ∑

j = 1

n
βj

2 (2)

λ∑j = 1
n βj

2 is the LASSO penalty addition to the L1 optimization cost function. If λ is zero, 

then it will be a common L1 optimization problem. However, as λ becomes larger, LASSO 

will shrink the weight of less significant features to zero, which works perfectly for feature 

selection. During our feature selection implementation, we select the λ that perfectly drops 

the Y-axis of acceleration features and maintains other useful axes features.

Table 4 shows the selected features. As expected, the Y-axis features of the accelerometer 

are dropped. Also, the maximum and minimum value time-domain features are dropped 

for all axes. Those features are dropped because the maximum and minimum values are 

typically not predictable when the patients perform activities, and they are not related to 

the action tremors. In total, the selected features are 5 * 3 time-domain features and 5 * 9 

frequency-domain features. Table 5 shows the top 20 selected features and their importance 

scores. The importance scores are calculated as follows:

Importance score = Certain Feature Weigℎt
Σ ∣ Weigℎt ∣ (3)

The Top 20 features total weights are 54.96% of the total weights, representing the most 

important features. Next, we feed all the selected features into the supervised-learning 

models.

3 MODELING

We implemented multiple supervised learning classifiers with the selected to detect PD 

action tremors. We employed classic learning algorithms, such as Linear Classification 

Models, K-Nearest-Neighbors (KNNs), and Support-Vector Machines (SVMs). We also 

applied Convolutional Neural Networks (CNNs) to perform the classification. In the 

following section, we present each classifier we designed to differentiate PD action tremors 

from regular activities.

3.1 Linear Classification Model

The first model we employ is a Linear Classification Model. The model Y can be presented 

as follows:

Y = β0 + ∑
j = 0

p
βjXj (4)

where X is the feature matrix, and β is the weight for each predictor.
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β = argminβL(β) (5)

where β  is the weight vector that can minimize the loss function L(β). The loss function can 

be presented as follow:

L(β) = ∥ y − βX ∥2 (6)

The final hyperplane that separates the two classes is:

Y = Xβ = X XTX −1XTY (7)

Y  is the projection of Y onto columns of X. The hyperplane separates the two classes of 

space. If a data point lies in a certain space, then the instance is classified as that category.

3.2 KNN Classification Model

The k-nearest-neighbors classification model is another frequently used supervised-learning 

model. A majority decision of the nearby data points can classify an input instance. 

According to a Euclidean distance function, an instance is categorized into the class with the 

highest prevalence among its K closest neighbors:

D = ∑
i = 1

k
xi − yi

2
(8)

Intuitively, if a particular instance is near most of the tremor class points, it is classified as 

a tremor instance. The KNN model has a principal parameter K; as K increases, the model 

becomes more inflexible. We implement five-fold cross-validation to choose K with the 

highest accuracy to pick the K.

3.3 SVM Classification Model

Another well-known supervised-learning algorithm we employ is Support-Vector Machine. 

It is most suitable for binary classification, and we classify tremor and non-tremor instances 

in our model. The advantage of SVM compared with the previous algorithms is that SVM 

provides linear classification and non-linear classification. It can provide a more flexible 

model that is moderately helpful in classifying similar instances on the boundary between 

tremor and non-tremor instances.

The SVM maximizes the margin around the separating hyper-plane. A subset of training 

samples specifies the decision function called the support vectors. The equation that defines 

the decision surface separating the classes is a hyperplane of the following form:

W T + B = 0

W is a weight vector, X is the input vector, and B is the bias. In our case, the hyperplane 

separates tremor and non-tremor classes.
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3.4 CNN Classification Model Design

In this subsection, we present our CNN design for action tremor classification. We classify 

each input action instance as a tremor event or a regular activity. Each instance includes 

time-domain and frequency-domain signal features. Our CNN model consists of eight 

layers. Next, we present each layer and its components of our CNN model in the following 

paragraphs.

3.4.1 Input Layer.—This input layer takes our 1-D (1 * 60) instance into the CNN 

model. It primarily organizes the input size for the subsequent layers, and it has any 

parameters or features to learn.

3.4.2 Convolutional Layer.—Our CNN model has one convolutional layer since our 

input size is small and simple to learn. The input size of our model is 1 * 60. We select 

a kernel size of 1 * 3 and the number of kernels is eight. The stride direction is only 

horizontal, and we use a stride size of 1 * 1. The convolutional layer generates the same 

amount of feature maps for each input instance as kernels. Therefore, the outputs of our 

convolutional layer are 1 * 58 * 8 feature maps.

3.4.3 Batch Normalization Layer.—To decrease the sensitivity to network 

initialization and prevent overfitting, we employ a batch normalization layer. Additionally, it 

can speed up CNN training and apply feature maps to the next ReLU layer. Eq. 10 illustrates 

the activation function. This function standardizes the input si by a mini-batch for each input 

instance. Eq. 11 demonstrates the output of this layer.

si = si − μB

σB
2 + ϵ (10)

μB is the mean and σB is the variance of the mini-batch.

yi = ksi + β (11)

where k is the scale factor, β is the compensation, and si is the normalized output in Eq. 10.

3.4.4 Relu Layer.—The ReLU layer, also known as the rectified linear unit layer, is a 

function that uses a non-linear activation function to transform all the negative input values 

into zero. Eq. 12 shows the activation function:

f(x) = x if x ≥ 0
0 if x < 0 (12)

The ReLU layer is more computationally efficient and helps avoid overfitting.

3.4.5 Max Pooling Layer.—The max pooling layer is primarily used to downsample the 

ReLU Layer’s output. The output of the max pooling layer is the max value of the inputs 

by a pooling filter. The max pooling layer utilized a pooling filter to generate the output by 

selecting the max value of the input matrix. In our model, the pool size is 1 * 2, and the 

stride size is 1 * 2. The output of our Max Pooling layer is 1 * 29 * 8.
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3.4.6 Fully-connected Layer.—This fully-connected layer is the neural network to 

calculate the weights and bias based on the previous input features. Each neuron decides 

the weight that prioritizes the most relevant category and generates the probablity for the 

classification decision. We use 32 neurons in our Fully-connected layer and have 7,456 

parameters to train.

3.4.7 Softmax Layer.—This softmax layer uses the softmax function to generate the 

probability for each instance that belongs to ‘action tremor’ and ‘no action tremor’. In this 

softmax layer, we set our classification probability boundary as 50%, which means if the 

probability of an instance is more than 50% of the ‘action tremor’, then it will be classified 

as a tremor instance.

3.4.8 Classification Output Layer.—The output of our classification layer is a binary 

result of ‘action tremor’ and ‘no action tremor’. For each round of training and testing in the 

evaluation phase, the outcome is compared against the ground truth to create the confusion 

matrix.

4 PERFORMANCE EVALUATION

We implemented two evaluation experiments, cross-evaluation and leave-one-out evaluation, 

to illustrate the performance of our supervised learning classifiers and selected features. 

We then compared our models and features with the-state-of-art model TremorSense. We 

utilized the 30 patients’ dataset mentioned in the previous section. The dataset included 

4,000 tremor class instances and 4,000 non-tremor class instances. Since the action tremor 

always happens unpredictably, some patients had more action tremors than others. This issue 

had less influence on cross-evaluation. This issue had less influence on cross-evaluation. 

However, it will have an impact on the leave-one-out evaluation. Therefore, we picked 

the top 10 PD patients’ data that included more action tremor events, to test our model 

in the leave-one-out evaluation. Next, we present the evaluation results and the feature 

visualization in detail.

4.1 Cross-Evaluation

We trained and tested our classifiers using all 30 patients’ instances in cross-validation. 

We employed five-fold cross-validation methods to train and test for each round. We also 

evaluated the results with the TremorSense CNN classifier. Figure 4 shows the results of 

each classification confusion matrix results. Table 6 shows the overall accuracy, precision, 

recall, and F1-score for each classifier. The F1-scores for all four models are higher than 

90%. SVM performs best with more than 92% of accuracy and F1-score. All four models 

fed with our hand-crafted features perform better than the TremorSense model fed with 

data-driven CNN features. The results demonstrate that our hand-crafted features are robust 

with different machine learning models.

4.2 Leave-one-out Evaluation

As we mentioned above, we selected ten patients for leave-one-out evaluation. In this 

experiment, we trained the classifiers with the nine patients’ data and tested the classifiers 
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with the one remaining patient’s data. The total tremor instances are 2,000, and the total 

non-tremor instances are 2,000. Table 7 shows the leave-one-out results for each classifier. 

Even though the leave-one-out results are slightly less than those of cross-evaluation, the 

performance is still robust. We can also conclude that SVM has the highest performance 

with all confusion matrix parameters greater than 91%. Similar to the results of cross-

evaluation, all four models perform better than the TremorSense model. The results 

demonstrate that our hand-crafted features and models are robust with new patients.

4.3 Features Visualization

We further demonstrate that our hand-crafted features perform better than the TremorSense 

data-driven features. We employed a tool, t-distributed stochastic neighbor embedding (t-

SNE), to visualize the high-dimensional features. The t-SNE is a statistical technique to 

visualize high-dimensional data by assigning every data point a particular location in a 2-D 

or 3-D figure. Figure 6 shows the distribution of our hand-crafted features and TremorSense 

data-driven features in 2-D maps. The top two figures show the TremorSense features, 

and the bottom two figures show our hand-crafted features. We randomly selected 500 

instances to plot in these figures. The red dots are the tremor instances, and the blue dots 

are the non-tremor instances. The X-axis comp-1 and The Y-axis comp-2 represent the 

two composite features from high dimensions. The different random states represent the 

random different projection angles to display the features in the 2-D dimension. We can 

conclude from the figures that our hand-crafted features have more specific boundaries than 

the TremorSense data-driven features. The results also demonstrate that our features perform 

better than TremorSense features with the supervised machine learning models.

5 RELATED WORKS

In recent years, many computer scientists have focused on solving PD-related problems with 

the assistance of a specialist in the field. Researchers utilize different sensors and algorithms 

to develop detection and quantification systems of various PD symptoms, including freezing 

of gait (FOG)[21, 37], hand tremors, speech difficulties[4, 24], etc. There have been 

increasing research works focusing on hand tremor detection and severity assessment in 

the past decade. They employ different sensors, such as accelerometers[16, 18–20, 22, 

31, 32], gyroscopes[34, 35], electromyography (EMG)[5,23], WiFi-based sensors[6], and 

other motion sensors[26–28, 30, 40] to build detection devices. Based on various signals 

from these sensors, different models, such as threshold models[16, 18–20, 22, 31], machine-

learning models[10, 41, 42], and deep learning models[6, 36, 39], are developed to detect 

hand tremor events.

Researchers have explored new methods to detect PD hand tremors in the last three years. 

In 2021, TremorSense[36] proposed a CNN model to detect three types of tremors using 

the 3-D time-domain accelerometer and gyroscope data. The dataset they collected includes 

11 UPDRS activities and three Fahn-Tolosa-Marin activities. In our paper, we employed the 

same dataset and used the action tremor activities and normal activities as a comparison 

group. The accuracy of detecting all types of tremors in the TremorSense was more than 

94%. When we applied the TremorSense CNN model to the data of only action tremors with 
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everyday activities, the evaluation results were 70% to 80%. However, we beat TremorSense 

using our hand-crafted features, and our classification accuracy and F-1 score were more 

than 90%. In 2021, Tong et al. [39] used their designed IMU sensors to detect PD hand 

tremors. They used a CNN model to classify tremor events and got an F-1 score of 

94.31%. Even though the F-1 score was high, they only collected data from five PD patients 

who walked in a circle back and forth. In comparison, our dataset is more diverse and 

results are more reliable since we collected data from 30 PD patients with 14 clinically 

relevant activities. In 2021[6], Chen et al. employed Wi-Fi sensing for hand rest tremor 

detection. In a small room, they simulated the frequency of hand tremors from 3Hz to 

7Hz and collected channel state information (CSI) signals. They used pre-trained models 

VGG19 and Resnet152 from Keras and customized the last multiple layers for tremor 

classification. In 2021, Rini et al.[33] developed a glove with five accelerometers on each 

finger. They collected data from six patients and calculated the acceleration frequency of 

each finger. If the frequencies from all five fingers were between 1Hz to 10Hz, it would 

be a tremor event. This detection algorithm does not not consider when some fingers 

have 0Hz frequencies while the frequencies others are in the range of 1Hz to 10Hz. In 

2020, Ibrahim et al. [12] fed the acceleration and angular velocity data into a hybrid 

convolutional-multilayer perceptron neural network to detect tremor events. The detection 

is limited to user-independent and task-independent activities, while our methods can work 

among different users and activities. In 2020 [1], Ahmed et al. utilized Photoplethysmograph 

(PPG) built-in smartwatch and EMG sensor to detect hand tremors. The highest accuracy of 

the tremor detection algorithm was 89%, and they collected data only from healthy subjects.

Researchers are using hand tremor signals to do more. They detect hand tremor signals to 

help assist wearable devices such as vibration devices to mitigate tremor symptoms in PD 

patients. They also use the signals to assess tremor severity[14, 15, 32], by applying similar 

sensors and machine learning algorithms to quantify tremor severity based on clinical 

standards such as UPDRS scores. In addition, some researchers employ hand tremor signals 

to detect PD[25] and quantify the severity of PD[8]. All these applications show the value 

and necessity of hand tremor signal detections.

6 DISCUSSION AND FUTURE WORK

Our paper used conventional motion sensors like accelerometers and gyroscopes to collect 

data. These sensors are practical and portable for PD patients to use in any environment. 

However, it is difficult for motion sensors to forecast tremor events. Motion sensors can 

detect tremor signals when a tremor has already happened. Future research can look into 

how to predict hand tremors and other PD symptoms using clinical sensors like EEG and 

EMG.

Our project collected the data in the clinical environment. We did the data processing and 

built tremor classification models offline. The future work for us is to develop an online 

system that can detect hand tremors in real-time with wearable devices and smartphones, 

and run a pilot study to test the robustness and accuracy of our system in different 

environments.
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Our paper mainly selected supervised machine-learning models since we have labeled the 

action tremor events from tremor activities based on the videos. Future research can focus on 

unsupervised learning and deep learning models. Those models may potentially enhance the 

action tremor detection performance.

As we mentioned in the related work section, PD hand tremor signals may be used to 

evaluate the tremor severity and PD severity. Wearable technology can accurately detect 

tremors using our methods. PD patients may employ non-intrusive wearable technology to 

track the daily change in severity in a domestic environment setting. Additionally, accurate 

tremor detection helps wearable technology provide the appropriate care and mitigation. Our 

tremor detection techniques will be used in future studies to create these wearable devices.

7 CONCLUSION

Our paper focuses on detecting PD action tremors using the accelerometer and gyroscope 

sensor. We extracted hand-crafted features based on domain knowledge and selected the 

features with the LASSO algorithm. From the t-SNE visualization results, our hand-crafted 

features have more apparent boundaries than the state-of-art data-driven TremorSense 

features. We evaluated our features on four supervised learning models. The performance 

of all models has more than 90% of F-1 scores cross-validation results and more than 88% 

of F-1 scores leave-one-out results, which indicates that different classification algorithms 

perform robustly and similarly with our features. The performance of our models using 

hand-crafted features beat the TremorSense using data-driven features.
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Figure 1: 
UG Sensor band

Sun et al. Page 15

IEEE Int Conf Connect Health Appl Syst Eng Technol. Author manuscript; available in PMC 2023 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
UG Sensor Axes
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Figure 3: 
Convolutional Neural Network Layers
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Figure 4: 
Cross-Validation Confusion Matrix
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Figure 5: 
Leave-one-out Confusion Matrix
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Figure 6: 
TremorSense and Our Features in t-SNE 2-D Maps
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Table 1:

Scales and Activities

Number Scale Activity

1 UPDRS Finger Tapping

2 UPDRS Hand Movements

3 UPDRS Hands Pronation-Supination

4 UPDRS Toe Tapping

5 UPDRS Leg Agility

6 UPDRS Gait

7 UPDRS Kinetic Tremor of The Hands

8 Fahn-Tolosa-Marin Handwriting

9 Fahn-Tolosa-Marin Drawing

10 Fahn-Tolosa-Marin Pouring Water
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Table 2:

Patient Demographics

Characteristics Details

Patient Number 30

Gender 18 Males / 12 Females

Patient Age 45 – 84 Years old

Patient Average Age 67.43 Years old

PD Symptom Onset Age 35 – 82 Years old

PD Diagnosed Age 38 – 82 Years old

Disease Duration Years 0–24 Years

Disease Duration Average Years 8.80 Years
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Table 6:

Cross-evaluation Confusion Matrix

Classifiers Accuracy Precision Recall F1-Score

Linear Model 91.37% 91.44% 91.05% 91.24%

KNN 90.21% 90.02% 90.45% 90.51%

CNN 92.24% 92.50% 91.98% 92.21%

SVM 92.28% 92.40% 92.13% 92.26%

TremorSense 83.60% 87.18% 79.27% 83.04%
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Table 7:

Leave-one-out Evaluation Confusion Matrix Results

Classifiers Accuracy Precision Recall F1-Score

Linear Model 88.70% 88.86% 88.50% 88.68%

KNN 88.43% 88.64% 88.15% 88.39%

CNN 90.20% 90.28% 90.10% 90.19%

SVN 91.20% 91.08% 91.35% 91.21%

TremorSense 77.83% 77.13% 79.10% 78.10%
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